The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 1 X 1 X 1 X 1 1 X X X X X X X X X X 1 1 2X+2 2X+2 2X+2 1 1 2X+2 1 1 1 1 1 2X+2 1 1 2X+2 2X+2 2X+2 1 1 1 2X+2 2X+2 2X+2 2X+2 2X+2 2X+2 2X+2 1 0 2 0 2 0 2 0 2 2X 2X+2 2X 2X+2 2X 2X+2 2X 2X+2 0 2 0 2 0 2 0 2 2X 2X+2 2X 2 2X+2 2 2X 2 2X+2 2 2X 2X+2 0 2X 2X+2 0 2X 2X+2 2X+2 0 2X 2X+2 0 2 2 2 2 2X 2X+2 2X+2 0 0 0 2 2 2X 2X 2X+2 0 2X 0 2X 2X 2X+2 0 2X 2 2X+2 2X+2 2X+2 2X 0 0 0 2X 0 0 2X 2X 2X 2X 2X 2X 2X 0 0 0 0 0 0 0 0 2X 2X 2X 2X 2X 2X 2X 2X 2X 2X 0 0 0 0 0 0 0 0 2X 2X 2X 0 2X 2X 2X 0 0 0 0 2X 2X 0 0 0 0 2X 2X 0 2X 2X 2X 0 2X 2X 2X 2X 0 2X 0 0 0 2X 2X 0 0 0 0 0 0 2X 2X 2X 2X 0 0 0 2X 2X 2X 2X 0 0 0 0 2X 2X 2X 2X 0 0 0 0 2X 2X 2X 0 2X 0 0 2X 0 2X 2X 2X 0 2X 2X 0 2X 0 0 2X 0 0 2X 2X 0 0 0 0 2X 2X 0 2X 2X 0 2X 2X 0 2X 2X 0 2X 2X 2X 2X 0 0 2X 2X 0 0 generates a code of length 76 over Z4[X]/(X^2+2X+2) who´s minimum homogenous weight is 75. Homogenous weight enumerator: w(x)=1x^0+76x^75+140x^76+16x^77+11x^78+3x^80+4x^82+4x^91+1x^94 The gray image is a code over GF(2) with n=608, k=8 and d=300. This code was found by Heurico 1.16 in 25.2 seconds.